首页> 外文OA文献 >Utilizing Data from a Sensorless AC Variable Speed Drive for Detecting Mechanical Misalignments
【2h】

Utilizing Data from a Sensorless AC Variable Speed Drive for Detecting Mechanical Misalignments

机译:利用无传感器交流变速驱动器的数据检测机械不对中

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Conventional condition monitoring techniques such as vibration, acoustic, ultrasonic and thermal techniques require additional equipment such as sensors, data acquisition and data processing systems which are expensive and complicated. In the meantime modern sensorless flux vector controlled drives can provide many different data accessible for machine control which has not been explored fully for the purpose of condition monitoring. In this paper polynomial models are employed to describe nonlinear relationships of variables available from such drives and to generate residuals for real time fault detection and performance comparisons. Both transient and steady state system behaviours have been investigated for optimal detection performance. Amongst 27 variables available from the drive, the torque related variables including motor current, Id, Iq currents and torque signals show changes due to mechanical misalignments. So only these variables are explored for developing and optimising detection schemes. Preliminary results obtained based on a motor gearbox system show that the torque feedback signal, in both the steady and transient operation, has the highest detection capability whereas the field current signal shows the least sensitivity to such faults.
机译:诸如振动,声学,超声和热技术之类的常规状态监视技术需要昂贵且复杂的诸如传感器,数据采集和数据处理系统之类的附加设备。同时,现代的无传感器磁通矢量控制驱动器可以提供许多不同的数据,可用于机器控制,而对于状态监控的目的,这些数据还没有得到充分研究。在本文中,多项式模型用于描述可从此类驱动器获得的变量的非线性关系,并生成残差以进行实时故障检测和性能比较。为了获得最佳检测性能,已经研究了瞬态和稳态系统行为。在驱动器可用的27个变量中,与扭矩有关的变量(包括电动机电流,Id,Iq电流和扭矩信号)显示由于机械未对准而发生的变化。因此,仅探索这些变量以开发和优化检测方案。基于电动机变速箱系统获得的初步结果表明,在稳定和瞬态运行中,转矩反馈信号具有最高的检测能力,而励磁电流信号则对此类故障的敏感性最低。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号